为何哺乳类颜色不能像鸟类与爬虫类一样丰富——着色的演化生物学

on

|

views

and

comments

长期以来,动物着色策略一直都是博物学家和哲学家感兴趣的话题,甚至在 2000 多年前亚里士多德的《动物史》中也早已出现过相似的议题[34]。在过去的几个世纪中,科学家们开始认真探索动物颜色是如何产生的[45],并阐明它们可能的功能[11, 12, 57]

其中哺乳类的颜色一般都被认为是比较单调的[8],印象中虽然有看过五色鸟、变色龙和箭毒蛙等颜色鲜艳的动物了,但相比之下五颜六色的哺乳类确实难以想像,这不禁让人思考是不是有哪些演化环节造成如此的差异?本篇文章将以多元的观点作切入,一步步探讨为什麽哺乳类着色(coloration)会不够丰富,并且梳理其中相关议题的脉络。

什麽影响着色策略?

首先厘清这个问题必需要分成几个层次。

  • 发色机制

除了生物萤光(bioluminescence)外,所有动物颜色都是由两种主要机制所产生的:(1) 色素着色以及 (2) 结构着色[16]。举例来说,蓝色颜料在自然界其实是稀缺的,大部分鸟类的蓝色羽毛(如台湾蓝鹊)就是利用结构着色,而不是蓝色色素[2, 35, 42]。其中生物色素如类胡萝卜素(carotenoid),吸收光谱约为 400–500nm,能在动物体内产生红色至黄色,而黑色素在所有可见波长范围内都表现出高吸光度,真黑素(eumelanin)产生黑色至金色;棕黑素(phaeomelanin)产生淡黄色至淡红色[21, 28, 36]。而不同於其他脊椎动物,目前除了洪都拉斯白蝙蝠(Ectophylla alba)能够在皮肤中累积类胡萝卜素以外[22],大部分哺乳类都只能在皮肤与毛发中产生黑色素[7]

  • 视觉系统

再来必须意识到的是,我们人类所感知到的颜色与其他动物自己所感知到的颜色是两回事。生物的体色对於各式各样的行为和演化研究非常重要,这些信号包括隐匿(crypsis)、拟态(mimicry)、警告色(warning coloration)、花果着色以及性别二态性(sexual dimorphism)等[4, 18]。对於这些特徵来说,真正重要的是这些信号的目标受众的色觉(color vision),无论是捕食者、传粉者还是潜在配偶等[23]。所以有人就认为颜色不是物体的固有属性,而是能感知它的生物体视觉系统属性[17]

换句话说,根据动物光感受器的吸收光谱的不同,从物体反射的波长光谱将被感知为不同的颜色[17, 24]。而关於色觉的差异,不同种类的视蛋白(opsins)就代表着不同的吸收光谱,然而在当代主要脊椎动物群中,四种视蛋白(代表四色视觉)是广泛存在於各种鸟类、鱼类和爬虫类中的,但意外的是大部分哺乳类却是双色视觉[6]

重要的演化事件—夜行瓶颈(nocturnal bottleneck)

所以是什麽造成哺乳类与鸟类、爬虫类的视觉差异?

  • 时间背景

时间拉回到 2.5 亿年前左右,哺乳动物最早是从侏罗纪早期的兽孔目祖先演化而来,根据对化石证据的分析推断,这些几乎是夜行性的小型食虫动物[31],关於这个现象有些议题会专注於讨论视觉[50, 58],而有些会谈地更全面[48, 60]。具体的夜行瓶颈假说最初是由Menaker等人制定[20, 43],内容主要是推测一些类哺乳爬虫类动物(合弓纲)在 P/Tr 事件(二叠纪/三叠纪灭绝事件)中幸存下来,并大约发展了 1.45 亿年後形成了所谓的「中生代哺乳类」(图1)。

  • 生态背景

夜行瓶颈假说认为早期哺乳动物在中生代期间会面临到日行性爬虫类(主龙类,如恐龙)的竞争[10, 29, 43, 58],而这一系列的适应性变化使早期哺乳动物能不用受太阳辐射和环境温度的限制下在夜间进行活动,并促进其内温系统的发展[23]。相对地,长期适应夜间活动可能使光感受器(photoreceptor)发生巨大变化,包括未充分利用之光感受器功能与紫外线保护机制的丧失[23]

  • 视觉光感受系统

视锥细胞(cone cells)和视杆细胞(rod cells)内的感光色素皆是由视蛋白组成,而视蛋白基因可分为五个亚型:(SWS1、SWS2、RH1、RH2 和 LWS)[13, 59],它们的接收光谱范围可以参考(图2)。

尽管可能所有五种视蛋白基因早期都存在於合弓纲中,但随着真兽下纲(eutherian)的演化辐射,视蛋白基因的多样性就开始急剧减少了[13](图1)。首先所有哺乳类祖先都丢失了 RH2 基因,虽然单孔目动物(鸭嘴兽和针鼹等)还是有保留着 SWS1 基因,但是却失去其功能,随即真兽下纲也丢失了 SWS2 基因,只剩 SWS1 和 LWS 能表达[13],导致至今大部分的哺乳类都属於双色视觉 [14, 56](表1)。

  • 非视觉光感受系统

尽管在整个哺乳动物演化过程中,色觉的变化是被认为神经生态适应最经典的例子之一,但事实上夜行瓶颈在塑造非视觉光感受(non-visual photoreception)方面,也发挥了相当的影响力[23]。其中黑视蛋白 (melanopsin,OPN4) 就扮演了非常重要的角色,它负责昼夜节律的光诱导及调节其他生理反应[23],例如:身体色素沉着的变化[51]、瞳孔收缩[38]、褪黑激素抑制[39]、睡眠诱导[40]及暗光运动[19](dark photokinesis[注2]) 等。

黑视蛋白有 OPN4X 和 OPN4M 这两种基因(OPN4M 是 OPN4X 的基因重复变体),它们广泛存在於非哺乳动物脊椎动物中,但 OPN4X 在早期哺乳动物演化中丢失[3, 15](表1)。至於这两个基因的差异并不明显,主要在於组职表达模式的不同[26],且至今仍然没有完全理解为什麽所有现存哺乳动物中保留的是 OPN4M 而非 OPN4X[23]

其他哺乳类的着色特例

  • 旧世界猴

约 8–9 千万年前第一批灵长类动物出现了[5, 54],虽然这些早期灵长类通常也被认为是夜行性的[41],但随後有许多灵长类动物谱系开始渐渐适应白天活动。直至大约 3–4 千万年前,不同於其他哺乳类,所有卡他因灵长类(catarrhine primates,包含旧世界猴、猿类与人类)都藉由基因重复多产生了一个 LWS 基因[44, 9],而这种革新开始提供灵长类重新拥有了三色视觉的能力。例如山魈因此得以演化出蓝色的脸谱,但牠们利用的原理是相干散射(coherently scattering)[49],而不是单纯的色素。

  • 能生物萤光的哺乳类

生物萤光简单来说就是生物将短波长的光吸收後并重新发射成长波长的光,与旧印象不同,有趋势显示越来越多哺乳类物种被发现能够进行生物萤光,虽然生物萤光的生态功能与起源目前还有争议,但可能与中新世古气候及物种的生活型态具有密切关系[25]

目前已知的在紫外线下具有生物荧光毛皮的哺乳类物种中,全部都是夜行性的,其中包括:鸭嘴兽[1]、美洲飞鼠属 ( Glaucomys spp.)[32]、跳兔(Pedetes capensis[46]和一些负鼠科 ( Didelphidae)物种[47]

  • 金鼹鼠

金鼹鼠(Amblysomus hottentotus、Amblysomus septentrionals、Chrysochloris asiaticaEremitalpa granti)是一群撒哈拉以南特有的视力退化食虫性穴居动物[33],牠们的毛发具有特殊的虹彩(iridescent),能反射出蓝绿色的高光,并且在电子显微镜下Snyder等人发现这些桨状毛发的超微结构[53],这构造除了能成色外还具有增加毛鳞耐磨性与减少摩擦力等功能,他们假设:因为缺乏视觉能力,金鼹鼠的虹彩既不是性择的产物,也不可能起到伪装的作用,唯一的可能就是毛发在这种结构下能够帮助金鼹鼠在地下移动时,减少在泥沙中的湍流,而毛发的虹彩可能就只是演化下的副产品。

哺乳类的着色并没有想像中的单调

虽然本篇的先入为主认为哺乳类的着色就是不丰富的,但如果论及花纹以及图案了话,也有观点是认为哺乳类的着色其实是很多样的[8],况且如上面所提及的案例,就算以我们人类的视角,也有越来越多证据显示某些哺乳类的颜色也没那麽单调。正如前面所说的对於动物的着色而言,真正重要的是讯息的接受者,所以如果局限於人类的视角了话,其实是难以了解其全貌的。

最後要提醒的是,即使夜行瓶颈影响了之後哺乳类的视觉系统,很多证据也显示视觉与着色之间是有共演化关系的,特别是那些具有婚姻色或性别二态性的物种,但是对於隐匿与伪装色等来说,证据其实是有限的[37,55],更何况有如同金鼹鼠一样的个案存在[53]。所以总体而言,这算是一个还满复杂的议题,某些时候在宏观演化学上不一定有所谓的必然[27],演化并不是说一定会这样发展或那样发展,更多的其实是要看这些生物在一定时空间尺度下要如何应对及适应。

注解

  1. 演化辐射指的是一个演化支多样化的一个过程[52]
  2. 暗光运动指的是动物在缺乏眼睛等感光器官下,所进行的随机寻光行为[19]

参考资料

  1. Anich, P. S., Anthony, S., Carlson, M., Gunnelson, A., Kohler, A. M., Martin, J. G., & Olson, E. R. (2020). Biofluorescence in the platypus (Ornithorhynchus anatinus). Mammalia, 85(2), 179–181. doi: 10.1515/mammalia-2020-0027
  2. Bagnara, J. T., Fernandez, P. J., & Fujii, R. (2007). On the blue coloration of vertebrates. Pigment Cell Research, 20(1), 14–26. doi:10.1111/j.1600-0749.2006.00360.x
  3. Bellingham, J., Chaurasia, S. S., Melyan, Z., Liu, C., Cameron, M. A., Tarttelin, E. E., Iuvone, P. M., Hankins, M. W., Tosini, G., & Lucas, R. J. (2006). Evolution of Melanopsin Photoreceptors: Discovery and Characterization of a New Melanopsin in Nonmammalian Vertebrates. PLoS Biology, 4(8), e254. doi: 10.1371/journal.pbio.0040254
  4. Bennett, A. T. D., Cuthill, I. C., & Norris, K. J. (1994). Sexual Selection and the Mismeasure of Color. The American Naturalist, 144(5), 848–860. doi: 10.1086/285711.
  5. Bininda-Emonds, O. R. P., Cardillo, M., Jones, K. E., MacPhee, R. D. E., Beck, R. M. D., Grenyer, R., Price, S. A., Vos, R. A., Gittleman, J. L., & Purvis, A. (2007). The delayed rise of present-day mammals. Nature, 446(7135), 507–512. doi: 10.1038/nature05634
  6. Bowmaker, J. K. (2008). Evolution of vertebrate visual pigments. Vision Research, 48(20), 2022–2041. doi: 10.1016/j.visres.2008.03.025
  7. Bradley, B. J., & Mundy, N. I. (2008). The primate palette: The evolution of primate coloration. Evolutionary Anthropology: Issues, News, and Reviews, 17(2), 97–111. doi: 10.1002/evan.20164
  8. Caro, T. (2005). The adaptive significance of coloration in mammals. BioScience 55(2), 125–136. doi: 10.1641/0006-3568(2005)055[0125:TASOCI]2.0.CO;2
  9. Carvalho, L. S., Pessoa, D. M. A., Mountford, J. K., Davies, W. I. L., & Hunt, D. M. (2017). The Genetic and Evolutionary Drives behind Primate Color Vision. Frontiers in Ecology and Evolution, 5(34). doi: 10.3389/fevo.2017.00034
  10. Crompton, A. W. (1980). Biology of the earliest mammals. In K. Schmidt-Nielsen, L. Bolis, & C. R. Taylor (Eds.), Comparative Physiology: Primitive Mammals (pp. 1–12).  New York, NY: Cambridge University Press.
  11. Darwin, C. (1859). On the origin of species by means of natural selection. London, UK: Murray.
  12. Darwin, C. (1871). The descent of man and selection in relation to sex. London, UK: Murray.
  13. Davies, W. I, Collin, S. P., & Hunt, D. M. (2012). Molecular ecology and adaptation of visual photopigments in craniates. Molecular Ecology, 21(13), 3121–3158. doi: 10.1111/j.1365-294X.2012.05617.x
  14. Davies, W. L., Carvalho, L. S., Cowing, J. A., Beazley, L. D., Hunt, D. M., & Arrese, C. A. (2007). Visual pigments of the platypus: A novel route to mammalian colour vision. Current Biology, 17(5), R161–R163. doi: 10.1016/j.cub.2007.01.037
  15. Davies, W. L., Hankins, M. W., & Foster, R. G. (2010). Vertebrate ancient opsin and melanopsin: divergent irradiance detectors. Photochemical & Photobiological Sciences, 9(11), 1444. doi: 10.1039/c0pp00203h
  16. Doucet, S. M., & Meadows, M. G. (2009). Iridescence: a functional perspective. Journal of The Royal Society Interface, 6(Suppl_2), S115–S132. doi: 10.1098/rsif.2008.0395.focus
  17. Endler, J. A. (1978). A Predator’s View of Animal Color Patterns. Journal of Evolutionary Biology, 11(3), 319–364. doi: 10.1007/978-1-4615-6956-5_5
  18. Endler, J. A. (1990). On the measurement and classification of colour in studies of animal colour patterns. Biological Journal of the Linnean Society, 41(4), 315–352. doi: 10.1111/j.1095-8312.1990.tb00839.x.
  19. Fernandes, A., Fero, K., Arrenberg, A., Bergeron, S., Driever, W., & Burgess, H. (2012). Deep Brain Photoreceptors Control Light-Seeking Behavior in Zebrafish Larvae. Current Biology, 22(21), 2042–2047. doi: 10.1016/j.cub.2012.08.016
  20. Foster, R. G., & Menaker, M. (1993). Circadian Photoreception in Mammals and Other Vertebrates. Light and Biological Rhythms in Man, 73–91. doi: 10.1016/b978-0-08-042279-4.50009-1
  21. Fox, D. L. (1953). Animal Biochromes and Structural Colours. Amsterdam University Press.
  22. Galván, I., Garrido-Fernández, J., Ríos, J., Pérez-Gálvez, A., Rodríguez-Herrera, B., & Negro, J. J. (2016). Tropical bat as mammalian model for skin carotenoid metabolism. Proceedings of the National Academy of Sciences, 113(39), 10932–10937. doi: 10.1073/pnas.1609724113
  23. Gerkema, M. P., Davies, W. I. L., Foster, R. G., Menaker, M., & Hut, R. A. (2013). The nocturnal bottleneck and the evolution of activity patterns in mammals. Proceedings of the Royal Society B: Biological Sciences, 280(1765), 20130508–20130508. doi: 10.1098/rspb.2013.0508
  24. Gerl, E. J., & Morris, M. R. (2008). The Causes and Consequences of Color Vision. Evolution: Education and Outreach, 1(4), 476–486. doi: 10.1007/s12052-008-0088-x
  25. Gray, R., & Karlsson, C. (2022, February 6). 101 years of biofluorescent animal studies: trends in literature, novel hypotheses, and best practices moving forward. doi: 10.32942/osf.io/ub6yn.
  26. Hauzman, E., Kalava, V., Bonci, D., & Ventura, D. F. (2019). Characterization of the melanopsin gene (Opn4x) of diurnal and nocturnal snakes. BMC evolutionary biology, 19(1), 174. doi: 10.1186/s12862-019-1500-6
  27. Haufe, C. (2015). Gould’s Laws. Philosophy of Science, 82(1), 1–20. doi: 10.1086/678979
  28. Hill, G. E. (2010). National Geographic Bird Coloration (Illustrated ed.). National Geographic.
  29. Hut, R. A., Kronfeld-Schor, N., van der Vinne, V., & de la Iglesia, H. (2012). In search of a temporal niche. Progress in Brain Research, 199, 281–304. doi: 10.1016/B978-0-444-59427-3.00017-4
  30. Jacobs, G. H. (2009). Evolution of colour vision in mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1531), 2957–2967. doi: 10.1098/rstb.2009.0039
  31. Kemp, T. S. (2005). The origin and evolution of mammals Oxford. UK: Oxford University Press.
  32. Kohler, A. M., Olson, E. R., Martin, J. G., & Anich, P. S. (2019). Ultraviolet fluorescence discovered in New World flying squirrels (Glaucomys). Journal of Mammalogy, 100(1), 21–30. doi: 10.1093/jmammal/gyy177
  33. Kuyper, M. A. (1985). The ecology of the golden mole Amblysomus hottentotus. Mammal Review, 15(1), 3–11. doi: 10.1111/j.1365-2907.1985.tb00379.x
  34. Lennox, J. G. (2002). Aristotle: On the Parts of Animals I-IV (Clarendon Aristotle Series) (1st ed.). Clarendon Press.
  35. Liao, S. F., Yao, C. Y., & Lee, C. C. (2015). Measuring and modeling the inconspicuous iridescence of Formosan blue magpie’s feather (Urocissacaerulea). Applied Optics, 54(16), 4979. doi: 10.1364/AO.54.004979
  36. Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Current Protocols in Food Analytical Chemistry, 1(1), F4.3.1–F4.3.8. doi: 10.1002/0471142913.faf0403s01 
  37. Lind, O., Henze, M. J., Kelber, A., & Osorio, D. (2017). Coevolution of coloration and colour vision? Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1724), 20160338. doi: 10.1098/rstb.2016.0338
  38. Lucas, R. J., Douglas, R. H., & Foster, R. G. (2001). Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nature Neuroscience, 4(6), 621–626. doi: 10.1038/88443
  39. Lucas, R. J., & Foster, R. G. (1999). Neither Functional Rod Photoreceptors nor Rod or Cone Outer Segments Are Required for the Photic Inhibition of Pineal Melatonin*. Endocrinology, 140(4), 1520–1524. doi: 10.1210/endo.140.4.6672
  40. Lupi, D., Oster, H., Thompson, S., & Foster, R. G. (2008). The acute light-induction of sleep is mediated by OPN4-based photoreception. Nature Neuroscience, 11(9), 1068–1073. doi: 10.1038/nn.2179
  41. Martin, R. D., & Ross, C. F. (2006). The Evolutionary and Ecological Context of Primate Vision. The Primate Visual System, 1–36. doi: 10.1002/0470868112.ch1
  42. Mason, C. W. (1923). Structural Colors in Feathers. I. The Journal of Physical Chemistry, 27(3), 201–251. doi: 10.1021/j150228a001
  43. Menaker, M., Moreira, L., & Tosini, G. (1997). Evolution of circadian organization in vertebrates. Brazilian Journal of Medical and Biological Research, 30(3), 305–313. doi: 10.1590/s0100-879×1997000300003
  44. Nathans, J., Thomas, D., & Hogness, D. S. (1986). Molecular Genetics of Human Color Vision: The Genes Encoding Blue, Green, and Red Pigments. Science, 232(4747), 193–202. doi: 10.1126/science.2937147
  45. Newton, I., Cohen, B. I., Einstein, A., & Whittaker, E. (2012). Opticks: Or a Treatise of the Reflections, Refractions, Inflections & Colours of Light-Based on the Fourth Edition London, 1730. Dover Publications.
  46. Olson, E. R., Carlson, M. R., Ramanujam, V. M. S., Sears, L., Anthony, S. E., Anich, P. S., … Martin, J. G. (2021). Vivid biofluorescence discovered in the nocturnal Springhare (Pedetidae). Scientific Reports, 11(1). doi: 10.1038/s41598-021-83588-0
  47. Pine, R. H., Rice, J. E., Bucher, J. E., Tank, D. H. J., & Greenhall, A. M. (1985). Labile pigments and fluorescent pelage in didelphid marsupials. Mammalia, 49(2). doi: 10.1515/mamm.1985.49.2.249
  48. Pough, H. F., Heiser, J. B., & McFarland, W. N. (1989). Vertebrate Life (3rd ed.). Macmillan Coll Div.
  49. Prum, R. O. (2004). Structural colouration of mammalian skin: convergent evolution of coherently scattering dermal collagen arrays. Journal of Experimental Biology, 207(12), 2157–2172. doi: 10.1242/jeb.00989 
  50. Schwab, I. R. (2012). Evolutions witness: how eyes evolved. New York, NY: Oxford University Press.
  51. Shiraki, T., Kojima, D., & Fukada, Y. (2010). Light-induced body color change in developing zebrafish. Photochemical & Photobiological Sciences, 9(11), 1498. doi: 10.1039/c0pp00199f
  52. Simões, M., Breitkreuz, L., Alvarado, M., Baca, S., Cooper, J. C., Heins, L., … Lieberman, B. S. (2016). The Evolving Theory of Evolutionary Radiations. Trends in Ecology & Evolution, 31(1), 27–34. doi: 10.1016/j.tree.2015.10.007
  53. Snyder, H. K., Maia, R., D’Alba, L., Shultz, A. J., Rowe, K. M. C., Rowe, K. C., & Shawkey, M. D. (2012). Iridescent colour production in hairs of blind golden moles (Chrysochloridae). Biology Letters, 8(3), 393–396. doi: 10.1098/rsbl.2011.1168
  54. Springer, M. S., & Murphy, W. J. (2007). Mammalian evolution and biomedicine: new views from phylogeny. Biological Reviews, 82(3), 375–392. doi: 10.1111/j.1469-185x.2007.00016.x
  55. Van der Kooi, C. J., Stavenga, D. G., Arikawa, K., Belušič, G., & Kelber, A. (2020). Evolution of Insect Color Vision: From Spectral Sensitivity to Visual Ecology. Annual Review of Entomology, 66(1). doi: 10.1146/annurev-ento-061720-071644
  56. Wakefield, M. J., Anderson, M., Chang, E., Wei, K. J., Kaul, R., Graves, J. A. M., Grützner, F., & Deeb, S. S. (2008). Cone visual pigments of monotremes: Filling the phylogenetic gap. Visual Neuroscience, 25(3), 257–264. doi: 10.1017/S0952523808080255
  57. Wallace A. R. (1889). Darwinism: an exposition of the theory of natural selection with some of its applications. London & New York: Macmillan.
  58. Walls, G. L. (2016). The Vertebrate Eye and Its Adaptive Radiation (Classic Reprint). Fb&c Limited.
  59. Yokoyama, S. (2000). Molecular evolution of vertebrate visual pigments. Progress in Retinal and Eye Research, 19(4), 385–419. doi: 10.1016/S1350-9462(00)00002-1
  60. Young, J. Z., & Nixon, M. (1991). The Life of Vertebrates (3rd ed.). Oxford University Press.

热门文章

日剧《城塚翡翠倒叙集》6看点!男主角濑户康史竟中途退出?电视台更改剧名开新篇章?

日剧《城塚翡翠倒叙集》6看点!男主角濑户康史竟中途退出?电视台更改剧名开新篇章?

陆剧《芳心荡漾》10大看点!秦岚×王子异一夜情17岁姐弟恋,《三十而已》抓马版

陆剧《芳心荡漾》10大看点!秦岚×王子异一夜情17岁姐弟恋,《三十而已》抓马版

DC《黑亚当》5看点!巨石强森神力来源、正反派,还有「正义协会」成员初登场!

DC《黑亚当》5看点!巨石强森神力来源、正反派,还有「正义协会」成员初登场!

最新文章

相关新闻

0 0 投票数
Article Rating
订阅评论
提醒
guest
0 Comments
内联反馈
查看所有评论
0
希望看到您的想法,请您发表评论x